Crystalline Materials for Actinide Immobilisation
ISBN: 1848164181
EAN13: 9781848164185
Language: English
Pages: 197
Dimensions: 1.00" H x 9.00" L x 6.00" W
Weight: 1.00 lbs.
Format: Hardcover

Crystalline Materials for Actinide Immobilisation

Book Overview
This book summarises approaches and current practices in actinide immobilisation using chemically-durable crystalline materials such as ceramics and monocrystals.As a result of the increasing worldwide growth of the nuclear industry, long-lived α-emitting actinides such as Pu, Np, Am and Cm are fast becoming a serious environmental concern -- actinide-bearing wastes have accumulated in different countries due to nuclear weapons production. On the other hand, as actinides are chemical elements with unique properties they could be beneficially used for humankind in areas such as medicine and technology. Durable actinide-containing materials are attractive for various applications. These include in chemically-inert sources of α-irradiation used for a variety of functions such as energy sources for unmanned space vehicles and microelectronic devices, as well as hosts for nuclear waste and in nuclear fuels to burn excess Pu.Unfortunately, there is currently no appropriate balance between safe actinide disposal and use, even though both processes require their immobilisation in a durable host material. Thus, the choice of an optimal actinide immobilisation route is often a great challenge for specialists.Although a wealth of information exists about actinide properties in many publications, little has been published summarising currently accepted approaches and practices for actinide immobilisation. Crystalline Materials for Actinide Immobilisation fills this gap using information based on the authors' first-hand experience and studies in nuclear materials management and actinide immobilisation.
Editor Reviews
From the front Cover This book summarises approaches and current practices in actinide immobilisation using chemically-durable crystalline materials e.g. ceramics and monocrystals. Durable actinide-containing materials including crystalline ceramics and single crystals are attractive for various applications such as nuclear fuel to burn excess Pu, chemically inert sources of irradiation for use in unmanned space vehicles or producing electricity for microelectronic devices, and nuclear waste disposal. Long-lived -emitting actinides such as Pu, Np, Am and Cm are currently of serious concern has a result of increased worldwide growth in the nuclear industry. Actinide-bearing wastes have also accumulated in different countries as a result of nuclear weapons production. Excess weapon and civil Pu from commercial spent fuel is waiting for environmentally-safe immobilisation. As actinides are chemical elements with unique features, they could be beneficially used in different areas of human life including medicine although currently there is no appropriate balance between safe actinide disposal and use. Both use and disposal of actinides require their immobilisation in a durable host material. The choice of an optimal actinide immobilisation route is often a great challenge for specialists. There is a wealth of information about actinide properties in many publications although little is published to summarise the currently accepted approaches and practices on actinide immobilisation. This book intends to provide such information based on the authors' experience and studies in nuclear material management and actinide immobilisation.